新蒲萄京网站-澳门新葡新京app可靠吗 > 阅读与欣赏 > 无线频谱的故事,彻底了解毫米波

原标题:无线频谱的故事,彻底了解毫米波

浏览次数:136 时间:2020-01-02

新蒲萄京网站 1

理论物理听起来很玄乎似乎只适合炒作而不适合研究,其实不然。我见过推导E=mc^2的公式,只够一张A4;从开普勒定律推导出万有引力方程,只需要2页A4不到(但需要微积分,所以牛顿刚发明微积分就用上了),用大一所学就能理解;而剩下的比如逃逸速度公式、支持力计算公式,更是我们高中课本的内容。

从今年开始如果你想换手机,那么5G将是一个难以回避的问题。作为被普遍认为将变革社会生活方方面面的下一代无线通信技术,5G将凭借超高的无线网络的速度、覆盖范围和响应能力在未来迸发出无限能量。

本文转载自微信公众号无线深海,作者蜉蝣采采

这一节我们来说一下,人类接收波的能力是有限的,前面说过人类通过自己的感觉器官发射或者接收各种波,同时还发明了许多工具来发射或者接收波,前者主要是眼耳鼻舌身意六根。后面的这个主要是我们发明的什么电视电报,手机wifi射电望远镜,其实都是在发射或者接收波的工具,是吧?但是我们要知道波的种类数量是个双重无穷大,前面说过什么叫双重无穷大?

所以其实几个大学毕业的GEEK,经常凑在一起,就能研究明白挺多内容的,当年爱因斯坦所在的业余组织“奥林匹斯学院”就是如此。只是现在越来越浮躁了,没人有空搭理这些东西了。

5G相比以往4G的优势有很多,不过最重要、普通消费者最关心的,恐怕还是突破想象的传输速率了。但是不知大家有没有想过,5G的速度为何能实现10倍甚至100倍的提高?其实这背后涉及一个关键技术:毫米波。

上帝说:要有光!于是便有了光。

波长和频率,是吧?

下面这篇文章,事情发生在1995~96年左右,是刚刚9月23日写着玩的,因为发现中间有几个地方与我记忆有不符之处,原稿又找不到,所以就只存为草稿而没有发。没想到昨天看到了“中微子超光速”的新闻,而这篇文章就与此有关,所以暂且把不符之处保留在那里,发出来。

事实上,IT之家小编在此前的文章中也曾提到过毫米波的相关技术,但并没有深入讲解,那么今天,小编不妨就带大家近距离认识一下毫米波。

130年前,随着电火花的微光在赫兹的实验台上的闪烁,人类叩开了电磁波的大门。而随着对电磁波研究的深入,可见光这种由上帝创造的神秘物质也被揭开了面纱,不再神秘。

这个都是从无穷小到无穷大,那么组合起来更是一个双重无穷大的数量。所以面对频率和波长的从无穷大到无穷小,因此人类能接受的接收的哈波的范畴仅仅是所有波里面的沧海一粟。就算到了科学飞速发展的今天,我们能接受的拨的信息也是有限数量,从天文望远镜到微观物理学,人类不可能发明能够覆盖所有波的工具,每一种我们发明的工具只能截获某一个特定波段的波,人类的自身的器官,那更是如此。再退1万步讲,在我们截获的波里面还有大量,因为无法了解其承载的信息,而变得毫无意义。

原文名称是“生活大爆炸之宇宙积分(一)”,现在改为生活大爆炸之何为光速,内容略有调整。

一、毫米波究竟是什么,为什么这么重要?

其实这些照亮我们的可见光,也不过是电磁波频谱上极窄的一小段罢了,并无太多太多特殊之处。上帝创造光的秘密逐渐被揭开了神秘的面纱。

新蒲萄京网站 2

内容很雷人(我现在想想当年居然能做出这些事情,也觉得不可思议),不保证正确,算是帮助大家理解一下“中微子超光速”到底在说什么。

前面我们说到,“高传输速率”是5G的一项关键技术指标。那么怎样提高传输速率呢?

电磁波就这样以正弦波的进行传播,这里要引入一个简单的公式:

前面咱们就说过语言语言的问题,那么其实就如同我现在如果讲座用吐火罗文用巴利文用古印度文,你就算听见了,也不知道里面包含着什么意思。所以实际上就是说我们这个空间当中也许存在着很多的波,咱们先不说那些无法测量无法截获的,就算是截获了是吧?你并不知道这个波里边其实包含着很复杂的意思。这个道理非常简单,你截获这个波是吧?看到这个东西,你知道他即便是判断出来它有含义,也未必能够了解它里边到底是什么含义,否则也不会直到今天甲骨文仍然没有全部破译,巨人像上刻下的文字,也不知道留下了什么天机!

即使按照程序员的标准,GEEK也是古怪的人;即使按照GEEK的标准,理论物理学家也是古怪的人;即使按照理论物理学家的标准,奥本海默也属于一个古怪的人……最后一句是纪录片里边的原话,前两句则是我向前把另外两种人一起拉进来。

首先我们明确,这里的传输速率,即单位时间里通过信道的数据量。在通信行业,关于信道传输速率,有这样一个公式:

电磁波波长,频率及光速的关系▲

前面说过,人类对世界的认知途径几乎都是通过波来实现的,遗憾的是,也许还有更多的波,以及还有更多的玻璃存在的信息,我们无法获知。人类接受波的能力受到了限制,人类制造波的能力更是有限。但是非常欣喜的看到我们整个人类在制造钵,然后运用波的规律上,其实已经获得了巨大的突破。比如说现在大家的手机基本上都是4G因为4G的到来才有了视频的平台,也包括才有了音频的平台。喜马拉雅才能这么火是吧?那么很快,据说明年就要5G开始普及,那什么叫四季?什么叫五系呢?

下面的内容,乃是当年介于GEEK和理论物理学爱好者之间的内容。

这个公式中,n为频带利用率,Rb为信道传输速率,B则为系统带宽。将这个公式变一下:

C:就是光速,光速是宇宙中的一个基本常量,光和其他电磁波都是以光速传播。

新蒲萄京网站 3

以下内容,建议在成年高等数学教师指导下阅读新蒲萄京网站 4

不难看出,传输速率和频带利用率以及系统带宽为正向关系,当频带利用率越高,传输速率越高;系统带宽越高,传输速率也越高。这就说明,要想提高信道传输速率,就有提高频带利用率和系统带宽两种方法。

λ:就是波长,就是电磁波在一个周期内能传播的距离。

为什么5G承载的东西多,四季承载的就比3G多,3G又比两G多,那么核心的原因是在于对波的压缩能力。我们把一段波里边写进去的信息的多少决定了咱们刚才说的是1G还是2G还是3G还是4G还是5G我们现在已经能够把是吧?大家通过手机接受的这种信息压缩到就是相当小的这种地步,把空中所飘着的这些手机信号里边承载了足够的信息量,同时也加大了手机本身的接收能力接收速度。所以我说人类在利用波的能力上实际上是在大幅度的提高,那么其实波还有更多人类改变波的这种应用,其实还有很多生活化的例子,有些例子听起来非常奇怪,但是确实是我们在没有意识的情况下使用了对波的改变,比如说唱歌,有些人天生就能发出更让人喜欢的波,有些人能够把波进行一定规律的编排,从而让人们听起来更加的喜欢,前面说的这些人就是歌唱家。

起点

高中时,最喜欢的乃是天文和天体物理,可惜政治只考了67而不是81,与志愿中的北大天体物理系失之交臂,学了航空。

1995年毕业后,终于不用考试了,又捡起来一点物理的爱好。下面的事情,大致发生在1995~1996年附近。

第一件事,乃是想知道如果有一个圆环(圆环是二维世界中的一维空间,只能前进或后退,但却首尾相连;一维世界的一维空间,则是一条直线),总质量M(有平均的线密度),半径为R,那么上面的任何一点(以下称为原点),受到别的点的引力是多少呢?这个是比较简单的积分,大一学生就能积分出来,只是结果出人意料:无穷大。

也就是如果真的有这样一个世界,会瞬间塌缩。

塌缩的原因,不是因为远处的引力,因为远处的引力再大也是有限的;而是来自于无穷接近原点的附近的引力。这个原点附近有这样几个特点:距离无穷小导致引力无穷大,质量无穷小/引力合力无穷小(两边都有物质平衡了多数引力,只有极小的因圆弧而产生的单向的引力)导致引力无穷小,两者斗争的结果,是无穷大战胜了无穷小。

第二件事,乃是想知道如果有一个球面(球面是三维世界的二维空间,有限但无界;二维世界的二维空间,则是一个无限无界平面),总质量M(有平均的面密度),半径为R,引力又如何呢?这个费劲了点,不过还不太难,结果依然是:无穷大。

所以,这两种情况虽然常常被引用来做例子,但这种世界其实肯定不存在。那我们的“四维世界中的三维空间”呢?

其实是傻子,也应该猜出:一定有限,否则咱们就不会在这里聊天了。原因何在?

球面与圆环相比,“远处”的物质的数量,呈2次方增加,也就是远处的物质多得多;而立体空间与球面相比,远处的物质就更多了,所以原点附近就不再出现无穷大的积分情况了。

OK,确立了这两种方法后,我们先放一放,来复习一下无线通信的一些基本概念,这样才能对这两种方法有更深的理解。

f:就是频率,也就是每秒能传播几个周期。单位就以赫兹为名,举例来说,1Hz的含义就是电磁波每秒传播一个周期,1000000Hz的含义就是每秒传播一百万个周期。

{"type":2,"value":"

四维世界的三维空间积分结果

这个积分公式挺麻烦的(虽然把第一、二件事情里边的积分微元,换成三维的,就出来了),但是当年有一个数学奇才在我们单身宿舍一个楼层上,他能记起来所有积分公式,帮助我完成了这个积分。

先得到的结果,里边有个常系数8/3,非常不爽,因为在任何咱们学过的什么E=mc^2啊里边,都没有这样丑陋的常数。

突然想到,三维球体的体积乃是4/3 * Pi * R^3,里边用的是四维球体体积(忘了,好象是2*Pi^2*R^3,多少年看不到Pi^2这种数字,肯定有误),于是强行改成三维的,结果出来了:引力=2GMm/R^2,“重力加速度”就是g = 2GM/R^2。(里边用的G,是万有引力常数)

这个“重力加速度”是我们感觉不出来的东西,就像我们现在站在地球上平面上,活得好好的,谁能知道有一种重力?

本来到此为止也就散会了,结果有一天在一家书店翻弄一本《近代物理学》,里边有一个章节就赫然印刷这这个公式,前面只有一句话:“根据牛顿万有引力定律,可以得到:(本公式),所以……(说别的事情去了)”。

殊途同归,一定有原因。费劲巴拉地找到一个原来就有的东西,还能有什么创新意义?

其实麦哲伦环球航行,最后到达的还是印度,一样也是贩卖胡椒辣椒,但其意义不是说另找到一条路,而是证明地球是圆的。

因为本来我做这个积分的模型如果成立,就会有下面的诸种推论的。

我们所说的无线通信,就是利用无线电磁波进行通信,翻中学的物理课本,我们还能找到那张熟悉的图:

由于光速恒定,所以波长和频率就是成反比关系,即波长越长,频率越低;反过来就是波长越短,频率越高。

推论一:何为光速?

音速为何是340米/秒?这个听起来没什么原因啊,但我们大学是学过空气动力的,所以知道这个速度的物理意义,是空气中分子运动的平均速度。也就是可以理解声音传播,是一个分子装上另外一个分子,再继续撞下去……所以音速和空气中分子平均速度有关(因此与气温也有关系)。

但是光速呢?它的数值大家都知道,但是对应什么物理意义呢?看过很多资料,都没有提到,只能说“是测量的结果”。

先说一个题外话。在地球表面这个二维空间中的物体可以以0~7.9公里每秒的速度运行,而且都能停留在这个表面上。但是如果超过7.9,就不会停留在这个球面上,变成卫星发射出去了。因此可以理解“高一维世界的环绕速度,都是低一维世界的最高速度”。

如果用上面的理论来分析,我们这个“四维世界中的三维空间”的逃逸速度就是光速,光速可以超越,但是物体将无法留在我们的世界。就像卫星因重力下降的弧度不够而离开地面一样。

因为知道g之后,计算环绕速度的公式是现成的,所以若光速c就是环绕速度,带进去得到:

环绕速度的公式是:mg = mV^2/R,就是g = V^2/R

前面提到如果那个积分模型正确,在宇宙中任何一点,“重力加速度”是:g = 2GM/R^2

两个公式一合并:V^2/R = 2GM/R^2 => V^2 = 2GM/R,前面提到了,V就是光速c,于是得到:c^2=2GM/R。

这个是附录书中的黑洞的引力半径公式,不过前面积分的时候,可没假设我们的宇宙本身是个黑洞,但既然积分结果相同,那么何不假设我们的宇宙本身是一个黑洞,而我们正在黑洞中?。

这个公式还解释了光速c的物理含义,给出任何一个宇宙的M和R,就能算出这个宇宙的光速来,而且不同宇宙(黑洞)内的光速各不相同。

下面会看到,这个公式在这种假设下,会闹出更大的乱子。

(待续)

 

昨天的中微子超光速新闻:

《近代物理学》北大出版社 王正行:,文中提到的公式在523页的公式16.52,书中是黑洞的引力半径公式

音速:

光速:,注意里边没有任何“光速为何是这个数值”;还提到1960及1983年光速成为定义长度的方法(下篇会用到)

环绕速度:

这个词条主要是关于逃逸速度(第二宇宙速度)的,环绕速度是其中提到的第一宇宙速度。

 

点击下载免费的敏捷开发教材:《火星人敏捷开发手册》

新蒲萄京网站 5新蒲萄京网站 6

 

上面这张图是电磁波谱,它是按照电磁波的频率顺序进行排列而画出来的。频率,是电磁波的重要属性。

这个简单的数学关系中,蕴藏着电磁波频谱的全部秘密。

中学物理老师曾经带着我们研究的是可见光部分,而在无线通信领域,主要研究的是图中绿色框线框起来的部分。

电磁波分类及其波长,频率的类比▲

我们知道,无线通信的基本原理是将声画信息变换为含有声画信息的电信号,再把电信号“寄载”在比该信号频率高得多的高频振荡信号上去,然后用发射天线以无线电波的形式向周围传播。

在这么长的频谱上,可用于无线通信的,仅有1MHz这一段。可谓“弱水三千,只取一瓢”。

▼打个比方,整个无线电磁波的频段就像一条“大路”,其中的高频振荡波就像运载工具。

真正打开无线通信新时代大门的是一个叫马可尼的意大利人。120年前,这个年轻人在兴趣的支撑之下,潜心研究赫兹的实验结果,智慧和汗水终于凝成了结晶:世界上第一台无线电报机宣告诞生。

▲图片来源:Wikipedia

随后马可尼把他的发明投入了商用,无线电报的发展一帆风顺。无线电台的发射半径从6公里,到16公里,急剧扩大到3000公里。

前面说了,频率是电磁波的重要特性,不同频率的电磁波有不同的特性,也就意味着有不同的用途,所以我们在电磁波这条“大路”上进一步划分车道,分配给不同的对象和用途。具体的划分比较复杂,我们用下面这张表来展示:

在1901年,马可尼在英国东南角的一个乡村架设了越洋电报天线,人类控制的电磁波首次跨越大西洋,把信息从英国传送了加拿大。

以往的移动通信,主要走的是“中频”到“超高频”这段道路。在这段路上给各个国家运营商划分使用的频段,就是我们所说的频谱划分。例如4G lTE标准中我们国家划分的主要是超高频的一部分频谱资源。并且有一个趋势:从1G到2G、3G再到4G,划分的电波频率越来越高。这其实是为了满足更高传输速率的需要。

马可尼的越洋电报设备及天线▲

刚才我们说到这条“大路”,其中的一个载波就像运载工具,而载波载着信号,经历编码、调制、发送、媒介传输、接收、解码、译码的整个路径,就是我们广义所说的信道,就像是一辆汽车从出发地到目的地的行进轨迹,而信号,就是在信道中传输的。具体的传输方式,是以码元的形式传输。

当时的电报机十分庞大,电报机运转时,几千米以外能听到轰鸣声,夜里还能看到小屋里闪烁着的断断续续的刺眼的蓝色电弧光。

好,这时我们回到前面说的频带利用率。什么是频带?对于信道来讲,就是允许传送的信号的最高频率与最低频率之间的频率范围。提高频带利用率,简单说就是让信道中单位时间里引入更多的码元,从而提升速率。

随着无线通信的蓬勃发展,频谱资源越来越金贵。僧多粥少,如果无线电频谱使用混乱,互相干扰的话,大家就都玩不转了。因此对全球频谱资源的统一管理和约束的需求呼之欲出。

但是这样做也有不足。具体是怎么回事呢?简单说一下。信号的调制是通过操纵无线电波的幅度和相位来形成载波的不同状态,当调制方式由简单到多进制时,载波状态数增加,就表示一个码元代表的信息量增加了。码元增加,一个码元代表的信息量增加,但是载波的幅度不变,那么每个码元状态之间的间距变小了,所以容易受到噪声干扰而令码元偏离原本应该在的位置,造成解码出错,同时功耗也会增大。

1865年,法,德,俄,意,奥等20个欧洲国家的代表在巴黎签订了《国际电报公约》,“国际电报联盟”也宣告成立。

▲由简单调制到复杂调制的状态图

在之后的漫长岁月里,国际电报联盟的职权不断扩大,并于1934年改称为“国际电信联盟”(International Telecommunication Union)。

听起来略复杂,没关系,大家只要知道其实频带利用率不是越高越好就行。所以,人们很自然地将目光转向另一个更简单粗暴的方法——提高频谱系统带宽。

1947年,国际电信联盟成为联合国主管信息通信技术事务的一个专门机构。也是联合国机构中历史最长的一个国际组织。简称“国际电联”、“电联”或“ITU”。

但问题是目前常用的6GHz以下的频段已经基本没有更多的资源可利用了。5G时代怎么办呢?这时候,人们想到了过去一直没太关注的毫米波频段。

国际电联主要负责分配和管理全球无线电频谱,制定全球电信标准,向发展中国家提供电信援助,促进全球电信发展。

毫米波就位于微波与远红外波相交叠的波长范围,其实它也是兼有两种波谱特点的。

为了统一语言,方便管理,ITU对无线电频谱进行分段,给每段都编了号,并给出了详细的定义。这样以后大家讨论起来就有了标准,不至于因理解偏差导致鸡同鸭讲。

于是,在3GPP 38.101协议的规定中,5G NR主要使用两段频率:FR1频段和FR2频段。FR1频段的频率范围是450MHz——6GHz,又叫Sub 6GHz频段;FR2频段的频率范围是24.25GHz——52.6GHz,也就是我们这里所说的毫米波。

无线电频谱可分为下面表中的14个频带,无线电频率以Hz为单位,其表达方式为:

回到前面的那张表,可以看到,毫米波的波长在1mm-10mm之间,频率则约为30GHz-300GHz。当然,3GPP规定中是从24.25GHz开始,根据

3000kHz以下表示;

3MHz以上至3000MHz表示;

3GHz以上至3000GHz表示。

这个公式可知,它的波长是12.37毫米,也可以叫厘米波,其实这里的定义并不是非常严格。

世界这么大,不同地区情况不一,不同国家国情不同,因此国际电联就把全球分为3个区域来管理,不同区域的频谱分配上有所不同。

毫米波的最大特点是频率很高,但是,在30-300GHz之间也不是所有频段都可以随意使用的,因为有些频段效能比较差,所以目前很难被使用。3GPP协议38.101-2 Table 5.2-1中,为5G NR FR2波段定义了3段频率,分别是:

显而易见,中国位于ITU二区

它们都使用TDD制式。美国FCC则建议5G NR使用24-25 GHz (24.25-24.45/24.75-25.25 GHz)、32GHz 、42 GHz 、48 GHz 、51 GHz 、70 GHz 和80 GHz这几个频段。例如Verizon和AT&T已经将目光瞄准了28 GHz和39 GHz频谱的很大一部分,芯片巨头高通在16年推出的第一款5G调制解调器骁龙X50也支持28GHz频段的5G运行。

国际电联每3到4年召开一次“世界无线电通信大会”,负责审议并修订《无线电规则》。最近一次世界无线电通信大会是2015年召开的,下一次在2019年,届时5G的全球频谱划分将完全确定。

我们以28GHz和60GHz频段为例,通信领域有一个原理,无线通信的最大信号带宽大约是载波频率的5%,所以两者对应的频谱带宽分别为1GHz和2GHz,而4G-LTE频段最高频率的载波在2GHz上下,频谱带宽只有100MHz,毫米波的带宽相当于4G的10倍,这是一个有待开发的蓝海。

国际电联发布的《无线电规则》

这也就是未来5G信号传输速率会有极大提升的原因。

《无线电规则》涵盖世界无线电通信大会的各项决定,用于指导并规范世界各国的无线电频谱使用。然后,各国在国际电联的规范之内,结合自身情况,制定国内的无线电规则。

除了速率高,毫米波还有不少其他的好处。首先是,毫米波的波束很窄,相同天线尺寸要比微波更窄,所以具有良好的方向性,能分辨相距更近的小目标或更为清晰地观察目标的细节。

在我们中国,无线频谱当然是由工信部进行管理和分配的。

关于这一点,这里要展开一下,后面也会讲到。

分配的结果如何?请看下图《中华人民共和国无线电频率划分图》。

可能有同学会问,什么是波束?

中华人民共和国无线电频率划分图▲

小编打个比方,在黑暗中打开手电筒,光线照射的区域就很像波束。因为在空间传播过程中,无线信号的质量会出现衰减,但是它的能量传播仍然是有方向的,这就形成了波束。就像手电筒有照射方向,光线会在这个方向的两侧逐渐分散,通信领域里,开始下降固定功率的两侧形成的夹角,就是波束的宽度。

看晕了?这只能怪无线频谱的用途太多了:包含气象,定位,导航,卫星,广播,空间研究等等,事无巨细,甚至连遥控汽车使用的频谱也有规定。

波束宽度和天线增益有关,所谓天线增益,简单理解就是天线能将能量集中到一定方向的能力,就像手电筒能将灯泡光线多大程度聚集到一起的能力。一般天线增益越大,波束就越窄,这很好理解。

下面我们再次取其中的一个点,无线通信的频谱来说明。虽说无线通信在频谱上看起来不甚起眼,却让我们的生活发生的翻天覆地的变化。

那天线增益和什么有关呢?答案是波长。关于天线增益有一个公式:

无线通信频谱分为非授权频谱和授权频谱这两类。

G表示天线增益,Ae表示天线有效孔径。从这个公式中能够看出来,波长越短,天线增益越大,波束就越窄。毫米波的波长很短,也就造成了它的窄波特性。

非授权频谱:顾名思义,就是不需要经过工信部同意,只要遵守相关法规的要求,就可以直接使用。我们最熟悉的WIFI就工作在非授权频谱上,使用2.4GHz和5.8GHz这两个频段。

这里说到天线,顺便说一下,根据通信原理,天线长度与波长成正比,比例大约是1/10~1/4,毫米波的波长在毫米级,对应的天线也就更短了,所以,在手机中使用毫米波技术,天线尺寸也可以更小。

授权频谱:就是得到工信部的授权之后才能使用,在使用中也要严格遵守相关法规。2G,3G,4G以及即将到来的5G全部使用的是授权频谱。授权给谁?当然是移动、联通和电信这三大巨头了。

当然,具体它们的关系还很复杂,小编只是大致梳理了一下关系,深入地就不方便继续展开了。

频谱的使用有两种方式:FDD。

毫米波还有一个特点,就是传输质量高。这主要是由于它的频率非常高,所以毫米波通信基本上没有什么干扰源,电磁频谱极为干净,信道非常稳定可靠。

对于FDD来说,手机的发射频率和接收发射的频率是不同的,也就是说,用频率来区分发送还是接收,发送和接收可以同时进行。

另外毫米波的安全性也比较高,因为毫米波在大气中传播受氧、水气和降雨的吸收衰减很大,点对点的直通距离很短,超过距离信号就会很微弱,这增加了被窃听和干扰的难度。刚才说到毫米波波束窄,副瓣低,这也让它很难被截获。

一般把基站发手机收这条路称为下行,其所使用的频率自然就是下行频率了。反之,手机发基站收这条路径称为上行,其所使用的频率称为上行频率。

毫米波可以极大提升无线通信传输速率,这已经足够诱人,并且还有这些附带的优势,那么为什么这么多年一直没有被商用在手机通信领域中呢?这是因为,毫米波也有一些天然的缺陷,所谓硬币的两面,同样的特性,有优势,也有不足,这些不足很多年来令人们对毫米波的商用“望洋兴叹”。

对于TDD来说,手机的发射频率和接收发射的频率是相同的,接收和发送在不同的时间进行。这也就意味着,发送的时候不能接收,接收的时候不能发送。

毫米波最主要的不足,就是传输性能比较差,这体现在三个方面:

2G主要有两种技术:GSM和CDMA,全部采用FDD模式;

第一是这些频谱传得不太远,比如在全向发射时,这些频谱的能量发散比较快,容易衰弱,无法传播到很远;

3G主要有三种技术:WCDMA和CDMA2000采用FDD,TD-SCDMA采用TDD模式;

第二是绕射能力差,容易被楼宇、人体等阻挡、反射和折射,这很容易理解,想一个极端的例子,可见光,可见光的波长比毫米波更短,频率更高,它就很难穿过大部分物体;

4G标准也是区分TDD和FDD的,分别交LTE FDD和LTE TDD。

第三是毫米波还受限于很多空间因素,其中一个主要因素就是水分子对于这些频谱的吸收程度很高,比如这些频谱在下雨时、穿过树叶、穿过人体时,它们衰弱非常快。

新蒲萄京网站 ,讲到了这里,经过了蜉蝣君这长达2000多字的铺垫,这下国内几大运营商的频谱分配表该能看懂了吧?

还有一个原因是,生产能工作于毫米波频段的亚微米尺寸的集成电路元件在过去一直比较困难,需要比较大的金钱投入,这样阻碍了它的商用。

好了,到此本文就该结束了。能看到这里的,都是真爱,真的不转发一下再走?

二、毫米波虽难用,但也有办法驾驭

推荐阅读:

毫米波具有上面这些缺陷,所以过去很长一段时间里难以商用。不过随着通信技术的发展,目前行业已经有比较成熟的驾驭毫米波的方法。这里主要有波束成形技术、大规模MIMO天线技术等。

《还在抱怨WiFi信号差?看完这篇文章你就明白了》

这一部分我们就来介绍一下克服毫米波缺陷、并使其能够应用于消费场景的技术。

首先是大规模天线技术。前面我们在讲解毫米波波束宽度的时候说到毫米波波长很窄,其实,毫米波波长很短影响了天线增益,也间接影响接收功率。

上面这个公式是空间自由传播模型的接收天线功率计算公式,结合我们前面提到的天线增益计算公式,可以看到,当发射端的发射功率和天线增益固定时,接收端的接收功率与天线有效孔径成正比关系,与发射天线和接收天线之间的距离的平方成反比。

所以波长对天线孔径尺寸的影响,也会间接影响到功率。相比较以往运用的厘米波甚至更长的波段,毫米波波长更短,信号衰减严重,导致接收天线接收到的信号功率减少。而接收端的功率减少,显然是不行的。

这种情况下,我们不能随意增加功率,因为国家对天线的功率有限制,减少发射天线和接收天线之间的距离也是不现实的,毕竟人拿着手机是在不断运动状态中的,所以,人们想到一个解决方法:增加发射天线和接收天线的数量。

大规模MIMO技术就是基于这种思路产生,它还有一个名字,叫“多进多出”(Multiple-Input Multiple-Output),多根天线发送,多根天线接收。

其实多输入多输出MIMO技术不是新技术,传统的TDD网络可以实现2天线、4天线甚至8天线的多进多出,而在5G的大规模MIMO理念下,理论上天线数量可以是成百上千个,考虑到成本等各种因素,现阶段主要是64/128/256个。

大规模MIMO技术下,主要的优点自然是在单根天线功率很低的情况下依然能获得很好的信号质量,因为有很多天线同时发力,在波束成型技术的支持下令信号叠加增益,从而满足系统的功率需要,同时也避免了使用大动态范围功率放大器带来的硬件成本。

另外一个重要优势是增加了通信容量。大规模MIMO具备波束空间复用的特性,充分利用空间传播中的多径分量,在同一频带上使用多个数据信道发射信号,从而使得容量随着天线数量的增加而线性增加。

大规模MIMO系统中,基站天线数增多,形成阵列,除了水平方向外,还可以在垂直方向上进行波束成形和波束导向,从而提升整个空间的覆盖,并且利用波束成型技术能够把所传输的信号集中到空间的一个点上,让基站能够精确分辨每一个用户,从而提高了空间分辨能力。

在大规模MIMO技术中,我们反复提到一个技术,就是波束成型,这项技术可以说是大规模MIMO的基础技术。前面我们有讲到,毫米波的波束很窄,而且在全向发射时,会出现高达几十dB的信号衰减损耗,导致传播距离有限。

而波束成型技术,主要思路就是用一张“手”,将散开的波束集中起来,不扩散不浪费,形成定向发射,具体来说就是通过调节各天线的相位使信号进行有效叠加,产生更强的信号增益来克服损耗,从而让发射能量可以汇集到用户所在位置。

如此一来,有了波束成型技术,指哪打哪岂不是美滋滋?

不不不,其实这样也有缺点,就是它不像全向发射,一旦波束的指向偏离用户,用户反而接收不到高质量的无线信号。面对这种问题,除了大规模MIMO,还需要结合波束管理技术来解决。

波束管理技术具体实现方式很复杂,但简单来说,就是在大规模MIMO的众多波束中,以最快的速度找到基站和目标用户之间最佳的发射波束和接收波束,从而大大提高波束对准的精度。

在这里举个例子,高通去年推出的QTM052毫米波天线模组,就支持大规模MIMO和波束成型技术,在该模组中,高通利用多个天线形成相控天线阵列,天线之间的信号经过互相干涉影响,能把信号能量集中在一个方向发射出去;同时它们不再使用全向发射,而是选择定向发射,从而使得能量能够传输得更远,以提高覆盖。

澳门新葡新京app可靠吗 ,在此基础上高通还使用了波束导向技术和波束追踪技术,能够更智能地追踪传输对象,控制波束的方向。

三、毫米波,应用场景比拟想象中更广

说了这么多毫米波的特性,以及将它商用的技术,其实最终目的就是两个字——用它。

事实上,毫米波在未来的应用场景可能超出想象。首先,毫米波的特性决定了它可以主要被应用在大带宽、高容量的场景,面向高频段的eMBB场景,可用于人口密度大、网络容量需求大的热点区域。

首先,毫米波很适合在大型场馆如音乐会、体育馆等人口密集区域进行部署,可以带来数千兆比特的速率以及低时延和无限容量的体验,以往在万人体育场观看演出时手机信号几乎为零、上不了网的情况不会再有,可以为观众带来独有的个性化体验。

这里有一点小编需要补充的,就是毫米波的波长很小,所以天线也可以做得很小,这样未来在5G毫米波部署时,在普通宏基站基础上一定会有很多微基站得到部署,在城区街头、室内角落,你都有可能看到。

这样,毫米波就可以更好地在室内场景部署应用,这是它的强项,采用1:1或部分共址,实现媲美WiFi的上行和下行链路覆盖,还可以利用更大的带宽满足实现数千兆比特中指突发速率的需求,总之就是让你的上网体验更优质。

另外,毫米波还可用于固定无线宽带接入业务,满足典型如4K、8K电视的传输需求,满足市郊居民区的视频需求,一个典型的场景是家里购买一台CPE设备部署无线网络,然后即可通过电视联网观看高达8K的超高清视频,当然,前提是你有足够的流量。

未来,毫米波还可在汽车联网领域有很重要的应用,它可为联网汽车通信提供所需的更高数据传输速率与准确度,同时提高雷达作业的分辨率,实现更精准的驾驶安全辅助。

毫米波还有一个重要的应用领域,就是军事。其实毫米波在军事领域目前已经有应用,其丰富的频率资源不仅是宽带通信的重要手段,还提供了另一条抗干扰、抗截获的有效途径。不过这一点距离我们普通消费者就比较远了。

四、毫米波,已经在路上

说了这么多,大家是不是对毫米波在未来的应用越来越期待?或者说,对即将到来的5G时代越来越期待?

其实不用着急,从今年开始,第一批5G手机将陆续上市。例如在安卓阵营,他们绝大部分将采用高通骁龙855+骁龙X50 5G调制解调器的方案,前面我们也说过,骁龙X50是首款支持28GHz毫米波频段上数据连接的5G调制解调器芯片组,也就是说,在毫米波的应用上,高通已经早早给出了成熟可商用的解决方案。当然,正在今年的MWC2019期间,高通也发布了第二代5G射频前端解决方案,支持更纤薄、更高效的5G多模移动终端,其中包括新一代毫米波天线模组QTM525。

相信,随着5G商用部署进程的不断推进,5G终端在未来的上市,毫米波,将切切实实服务于我们日常的用网需求,甚至,毫米波的超强性能催生新鲜的终端设备,将为我们以往的生活娱乐和工作方式带来翻天覆地的变化。而这一天,在基础连接技术提供商、运营商以及终端厂商的合作努力下,正在一步一步地走来。

本文由新蒲萄京网站-澳门新葡新京app可靠吗发布于阅读与欣赏,转载请注明出处:无线频谱的故事,彻底了解毫米波

关键词:

上一篇:没有了

下一篇:观世音菩萨,观世音菩萨的由来